IMMUNOLOGY

Definitions:

- <u>Pathogen:</u> organism has ability to cause disease
- <u>Virulence:</u> degree of pathogenicity of a given strain of MO
- <u>Attenuation:</u> reduction in the normal virulence of a pathogen
- <u>Avirulent organism</u>: organism losing its virulence completely
- <u>Exaltation:</u> ↑ in virulence

Non-Specific Defense Mechanisms (Innate Immune System)

Skin & mucus membrane:

- Intact skin is virtually impregnable to MO
- When damage occurs \rightarrow invasion take place
- Many MOs fail to survive on skin surface due to inhibitory effects of FAs & lactic acid in sweat & sebaceous secretions
- Mucus, secreted by membranes lining inner surfaces of the body, acts as a protective barrier by trapping MOs & other foreign particles → removed by ciliary action (e.g. respiratory tract: coughing & sneezing)
- Many body secretions contain substances exert bactericidal action. Examples:
 - Lysozyme in tears, nasal secretions, & saliva
 - HCl in stomach \rightarrow low pH
 - Basic polypeptides (such as spermine in semen)
- Normal bacterial flora

Phagocytosis:

- Phagocytes responsible for engulfment & digestion of MOs
- 2 types of phagocytic cells, both derived from totipotent bone marrow stem cell:
 - **Monocytes:** migrate into tissues \rightarrow mature into macrophages
 - Neutrophils (also called polymorphonuclear leukocytes, PMNs)
- Another group of phagocytic cells are **macrophages**: large, longlived cells found in most tissues & lining serous cavities & lung
- Other macrophages recirculate to 2ry lymphoid organs, spleen, & lymph nodes
- Total body pool of macrophages constitutes reticuloendothelial system (RES)
- Phagocytosis: adherence of MO on surface of phagocyte → engulfment in vacuole (phagosome). Lysosomal granules fuse with it → phagolysosome
- Phagocytosis is enhanced by a family of proteins called <u>complement</u>

Complement system & other soluble factors:

- Group of heat-labile serum proteins
- When activated \rightarrow destruction of bacteria
- Present in low conc in serum
- Virus-infected cells → interferons (glycoproteins) → interfere with viral replication & activate leucocytes (NK cells) → kill these cells & also tumor cells
- Interferons known collectively as "acute phase proteins"

- Some interfeons enhance phagocytosis in conjunction with complement & upregulate Class I MHC → make infected cells more visible to Tc cells
- Main complement component is C3 & C5a
- Complement \oplus B cells & regulate memory of immune system

Interferon (INF)	Source
α-INF	Leukocytes
β-INF	Fibroblasts
γ-INF	T lymphocytes & NK cells

Inflammation:

- Early symptom of injury to tissue due to microbial infection
- Dilatation of local arterioles & capillaries → ↑ blood flow to area → redness
- ↑ capillary permeability → fluid accumulation → localized edema → promote bacterial growth & pressure on nerves → pain
- Fibrin deposited \rightarrow limit spread of MO
- Inflam mediators: lymphokines, derivatives of arachidonic acid, (PGs, LTs, TXs), & release of vasoactive amines (histamine & serotonin) from damaged cells
- Fever is the most common manifestation
- Thermoregulatory centre in hypothalamus regulates body temp affected by endotoxins (heat-stable lipopolysaccharides) of Gm -ve bacteria & by monokine secreted by monocytes & macrophages called IL-1 (endogenous pyrogen)
- ↑ body temp → ↑ Ab production & T-cell proliferation (beneficial effect of fever)

Host damage:

- MOs that escape phagocytosis in → regional lymph nodes via lymphatic vessels
 → thoracic duct → bloodstream → bacteraemia (indicate failure of 1ry defense)
- How MO overcome 1ry defense?
 - Hyaluronidase & streptokinase (by hemolytic streptococci):
 - Hyaluronidase dissolves hyaluronic acid (intercellular cement)
 - Streptokinase dissolves blood clots
 - Coagulase (by many *staph*) → coagulation of plasma surrounding MO → barrier protection against phagocytosis (coagulase = pathogenic MO)
 - o Capsule outside cell wall serves a similar function
 - Lecithinase (by *Clostridium perfringens*) is Ca²⁺-dependent → hydrolysis of erythrocytes & necrosis of other tissue cells
 - Collagenase (by CI. Perfringens) \rightarrow spread of infection
 - Leucocidins (by many strains of *streptococci*, most strains of *Staph aureus*, & most strains of Gm -ve bacteria) \rightarrow kill leucocytes

Specific Defense Mechanism

- 2ry defense
- Appearance in serum of modified serum globulins (immunoglobulins; antibodies)
- Ag: proteins, polysaccharides, lipids, or mixtures. Have high molecular wt
- Release of free Ab into blood & body fluid → humoral immune response
- Ag induce a 2nd type of response → cell-mediated immune response → ⊕ appearance of 'sensitized' lymphocytes in the body → protection against MO that have ability to live & replicate inside cells of host
- Certain of these lymphocytes are also involved in rejection of tissue grafts
- 3 groups of bacterial Ag:
 - $\circ~$ <u>H-antigens:</u> flagella. Chemical composition can vary b/w bacteria \rightarrow different Abs
 - o <u>O-antigens:</u> surface of bacterial cell wall (somatic Ag)
 - <u>Surface Ag:</u> polysaccharide capsule

Cells involved in immunity:

- Found mainly in lymphoreticular organs
- Divided into:
 - <u>Primary lymphoid organs:</u> thymus & BM
 - <u>Secondary or peripheral organs:</u> lymph nodes, spleen, Peyer's patches (lymphoid tissue in the submucosa of small intestine), & tonsils
- The predominant cell is lymphocyte
- Also, monocytes-macrophages, endothelial cells, eosinophils, & mast cells
- 2 types of immunity (humoral & cell-mediated) dependent on 2 distinct lymphocytes, B cells & T cells, respectively

Humoral immunity (B cells & T_{H1} cells):

- Ab-mediated immunity, is due rx b/w Ab & Ag. May involve complement
- Ag may possess multiple epitopes \rightarrow each \oplus Ab \rightarrow Ab react with epitope
- B cell activation supplied by secretion of peptide molecules (cytokines or lymphokines) & T-cells (helper T cells)
- These peptide molecules (IL 2,4,5, & 6) ⊕ B cells proliferation → mature into longer-living, non-dividing memory cells (IgA, E, G) & plasma cells that secrete Ab
- Ags require assistance of TH cells termed T-dependent (TD) Ags
- Ags induce Ab synthesis without assistance of TH cells known as T-independent (Ti) Ags. Only one class of Ig (IgM) is synthesized with weak memory response
- 5 classes of Ig. Each type distinguished by polypeptide chain: one pair of heavy (large) chains & one pair of light (small) chains joined by disulphide bonds
- Ig: Fab fragment (Ag binding site) & FC fragment

Immunoglobulin classes:

*All have 2 Ag binding sites <u>EXCEPT</u> IgM has 10 sites

- IgM:
 - Synthesis after 1ry Ag stimulation
 - Largely confined to bloodstream, because of large size (M. wt)
 - Appear early in response to infection (imp in bacteraemia)

- Single molecule can initiate complement cascade (i.e, potent activator)
- IgM (with IgD) is the major Ig expressed on surface of B cells where it acts as Ag receptor
- Minor memory response
- IgG:
 - \circ The major Ig synthesized during 2ry response (most abundant Ig)
 - Can cross placenta \rightarrow protection of newborn
 - \circ Diffuses readily into extravascular spaces \rightarrow neutralize bacterial toxins
 - Bind to MO → enhancing phagocytosis (opsonization) due to presence of receptor for FC on phagocytic cell surface
 - Complexes of IgG with bacterial cell activate complement, macrophages, & NK cells (through FC region of IgG)
- IgA:
 - In seromucous secretions (saliva, tears, nasal secretions, sweat, & secretions of lung, urinogenital & GI tracts
 - Protects external surfaces of body from microbial attack & prevent adherence of MO to mucosal cells → preventing entering body tissues
 - Protected from proteolysis by combination with another protein
- IgD:
 - Very low serum levels
 - The predominant surface component of B cells (on immature lymphocyte)
 - \circ After activation of B cells \rightarrow surface IgD can no longer be detected
 - o IgD may be involved with differentiation of B cells
 - o Play important role in early immune response
- IgE:
 - Very minor serum level (< IgD)
 - The major class of Igs
 - Binds with very high affinity to mast cells & basophils \rightarrow release of TNF- α , histamine, LTs, & other vasoactive compounds \rightarrow associated with immediate hypersensitivity reactions (hay fever & extrinsic asthma)
 - Play a role in immunity to helminthic parasites
 - Allergic people are hypersecretors of IgE

Humoral Ag-Ab reactions:

- 4 types of reactions:
 - <u>Neutralization:</u> soluble complex
 - <u>Precipitation</u>: insoluble precipitates enable phagocytes to eliminate soluble Ag from the body
 - <u>Agglutination:</u> aggregation of bacterial cells into agglutinates enabling phagocytes to eliminate these cells rapidly from the body
 - <u>Cytotoxic reactions:</u> Ab & cell react \rightarrow cell lysis. (presence of complement necessary for this rx)

Complement:

- Group of functionally linked 20 proteins that interact with each other to provide many functions of humoral immunity & inflammation
- Most of complement components present in serum as proenzymes

- Activation of a complement molecule occurs as a result of proteolytic cleavage of the molecule
- Many components of the system serve as substrate of a prior component and, in turn, activate a subsequent component
- This pattern of sequential activation **\rightarrow complement cascade**
- Complement can be activated by 2 pathways:
 - (a) Classical pathway: activated by Ag-Ab complex (IgM & IgG)
 - (b) Alternative pathway: activated (in absence of Ag-Ab complex) by agents such as bacterial polysaccharide
- Complement cause lysis of Gram -ve MO by allowing lysozyme to reach peptidoglycan layer of MO
- Generation of C3b complex on surface of cell facilitates phagocytosis (as the phagocytes possess a receptor for C3b)
- C3a & C5a → release of histamine →↑ vascular permeability → flow of serum Ab into infected area. Also attract phagocytic cells

Cell-mediated immunity:

- Localized rx occur to MO that have ability to live & multiply within cells of host
- These rx mediated by lymphocytes, phagocytes, & Ab
- Lymphocytes originate in BM & processed by thymus gland → T cells
- T cells express CD4 & CD8 antigenic markers
- HIV \rightarrow destruction of TH
- Immune system distinguish b/w Ags via MHC (major histocompatibility complex) molecules
- Human MHC gene located on chromosome 6. Known as HLA (human leukocyte Ag)
- MHC classes:
 - Class 1: integral membrane proteins on surface of all cells & platelets
 - Class 2: expressed on surface of B cells, macrophages, monocytes, various antigen-presenting cells (APCs), certain T cells
 - Class 3: several complement components

• Helper T cells (TH cells):

- o Central cells of immune system
- Activate other immune cells by secretion of cytokines
- Cytokines produced by macrophages & monocytes (monokines), whilst those produced by lymphocytes (lymphokines)
- TH cells express CD4 on their surface
- APC → IL-1 → \oplus TH cells to → IL-2 → differentiation of B cells (humoral response)
- T cells responsible for delayed-type hypersensitivity rx secrete the following lymphokines:
 - (1) Macrophage chemotactic factor (MAC)
 - (2) Macrophage migration inhibitory factor (MIF): encourages macrophages to remain in area
 - (3) Macrophage-activating factor (MAF)
- Supressor T cells (Ts cells):

- Inhibit activation phase of immune responses by:
 - Production of cytokines with inhibitory function
 - Ability to absorb necessary growth & differentiation factors
 - Possible lysis of cells bearing stimulatory Ag in association with MHC molecules
 - Possible release of specific soluble factors (TsF) directed at either TH cell or B cell

• Cytotoxic T cells (Tc cells):

- ①Virus-infected cells & tissue grafts & ②TH cells → ⊕ Tc cells formation
- Tc cells express CD8 on their cell surface
- \circ Kill virus-infected cells by TNF- β , granzymes, & granulolysins

Natural killer (NK) cells:

- Lymphocytes in blood & lymphoid tissue, esp. spleen
- Derived from BM
- Kill tumor & virus-infected cells
- Killing is not specific for viral antigenic epitopes & not restricted by MHC mol
- Express CD2, CD 16, & CD56 with low-affinity for FC portion of IgG
- The most important role of NK cells is to provide a 1st line of defense against viral infections as they do not require prior exposure to Ag in order to respond
- NK cells possess receptor for Fc \rightarrow adhere to target cells coated in Ab \rightarrow destruction of that cell
- This phenomenon is known as "antibody-dependent cell-mediated cytotoxicity (ADCC)"

Autoimmunity:

- Causes:
 - Evasion of tolerance to self antigens (e.g. lens or spermatozoa). These are confined to anatomical sites & do not have access to lymphoid tissue. So, exposure of to lymphoid cells as a result of surgery or accident → production of corresponding Abs
 - 2. Breakdown of tolerance mechanisms

Hypersensitivity:

- First 3 types involve interaction b/w Ag & Ab, and as onset of rx is rapid → immediate hypersensitivity
- 4th type (delayed hypersensitivity) involves T cells & symptoms appear after 24 hr
- 5^{th} type: Ab \oplus cell function
- <u>Type I (anaphylactic) reactions:</u>
 - Mechanism: cAMP \rightarrow cGMP \rightarrow Phospholipase C \rightarrow \uparrow cytosolic Ca²⁺
 - Rx b/w Ag & Ab on surface of mast cells → degranulation → release of vasoactive amoines → skin (urticaria), nasal mucosa (rhinitis), eyes (edema), bronchioles (extrinsic asthma), CVS (anaphylactic shock)
 - Ab are IgE, sometimes IgG Desensitization goal: ↓ IgE & ↑ IgG

- <u>Type II (cytolytic or cytotoxic) reactions:</u>
 - \circ Rx b/w Ag & Ab on surface of cells \rightarrow destruction by phagocytosis
 - \circ Activation of complement system \rightarrow lysis
 - o ADCC reactions involving NK cells may also occur
 - E.g. AB0 & Rh incompatibility, cells whose surface altered by sensitizing drugs
 - o Signs & symptoms: hemolytic anemia & thrombocytopenia
 - Ab are IgG & IgM
 - E.g. Rh fever, Haschimoto's thyroiditis, Goodpasture's syndrome, hemolytic anemia, Phimphigus, drugs (penicillin, cephalosporin, methyldopa)
- <u>Type III (complex-mediated) reactions:</u>
 - Due to presence of immune complexes in circulation or extravascular space
 - Complexes may localize in capillary networks (lungs, kidney, joints) → extensive tissue damage
 - Ab are IgM & IgG in large amounts in circulation
 - Two types:
 - Arthus reaction: local rx. Xss of Ab to AG
 - Serum sickness: xss of Ag to Ab → formation of soluble complexes
 → circulate & cause systemic reactions or deposited in kidneys, joints, & skin. E.g repeated admin of foreign (horse) serum
 - Other e.g. Subacute bacterial endocarditis, SLE, response to drugs (weeks after ttt)
- <u>Type IV (delayed hypersensitivity) reactions:</u>
 - Slow rx (1-3 d after exposure to Ag)
 - Rx b/w Ag-specific T cells (memory T_{H1} & Tc cells) & Ag → release of lymphokines & immunity
 - E.g. bacteria, viruses, fungi, graft rejection, contact dermatitis, Tuberculin test, Lepromin test, Celiac disease
- <u>Type V (stimulatory hypersensitivity) reactions [Autoimmunity; autoimmune disorders]:</u>
 - Cells possess surface receptor sites for chemical messengers of the body
 - If autoantibody produced against this site \rightarrow it can combines with it \rightarrow cause same effect as chemical messenger
 - E.g. thyrotoxicosis caused by autoantibody to receptor site to TSH

Types of immunity:

[Natural immunity]:

- Species immunity:
 - Humans are susceptible to diseases to which other animals are immune & vice versa
 - This is due to body temperature, biochemical differences, etc.
- Individual immunity:
 - Variation in natural immunity b/w individuals depend on state of health, age, hormonal balance, etc.

[Acquired immunity]:

Subdivided into actively acquired & passively acquired immunity, each of which may be induced naturally or artificially

- <u>Active acquired immunity:</u>
 - o Produced as a result of an antigenic stimulus
 - This stimulus may occur:
 - (a) Naturally: by clinical or subclinical infection
 - (b) Artificially: by admin of Ag in the form of vaccine or toxoid
 - \circ $\,$ Long-lasting immunity $\,$
- Passive acquired immunity:
 - o Admin of preformed Ab (there is no antigenic stimulus)
 - \circ This can occur:
 - (a) *Naturally:* by transplacental passage of Ab from mother to child & in breast milk
 - (b) Artificially: by admin of Ab preformed in another human or in animals (horses), which are used for production of antitoxic sera (antitoxins, such as tetanus, diphtheria)
 - Produces immediate protection of short duration (depending on rate of degradation of Ab)

Hemolytic disease of newborn:

- When mother develops immune response against calls of fetus (alloimmune response)
- E.g. Mother is Rh -ve & fetus is Rh +ve (ttt in pregnancy: Rhogam)
- \rightarrow hemolysis of fetal blood \rightarrow anemia & jaundice

Hyposensitivity:

- Administration of allergen to desensitize the patient
- \rightarrow IgE & IgG (exposure to allergen \rightarrow bypass IgE & activate IgG)
- Desensitization goal: ↓ IgE & ↑ IgG

